An Isoform of Nedd4-2 Plays a Pivotal Role in Electrophysiological Cardiac Abnormalities
نویسندگان
چکیده
We have previously shown that neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) isoforms with a C2 domain are closely related to ubiquitination of epithelial sodium channel (ENaC), resulting in salt-sensitive hypertension by Nedd4-2 C2 targeting in mice. The sodium voltage-gated channel alpha subunit 5 (SCN5A) gene encodes the α subunit of the human cardiac voltage-gated sodium channel (I Na), and the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene encodes rapidly activating delayed rectifier K channels (I Kr). Both ion channels have also been shown to bind to Nedd4-2 via a conserved Proline-Tyrosine (PY) motif in C-terminal with subsequent ubiquitination and degradation by proteasome. Therefore, loss of Nedd4-2 C2 isoform might be involved in electrophysiological impairment under various conditions. We demonstrate here that Nedd4-2 C2 isoform causes cardiac conduction change in resting condition as well as proarrhythmic change after acute myocardial infarction (MI). The Nedd4-2 C2 knockout (KO) mice showed bradycardia, prolonged QRS, QT intervals, and suppressed PR interval in resting condition. In addition, enhancement of T peak/T end interval was found in mice with surgical ligation of the distal left coronary artery. Morphological analyses based on both ultrasonography of the living heart, as well as histopathological findings revealed that Nedd4-2 C2 KO mice show no significant structural changes from wild-type littermates under resting conditions. These results suggested that Nedd4-2 with C2 domain might play an important role in cardio-renal syndrome through post-transcriptional modification of both ENaC and cardiac ion channels, which are critical for kidney and heart functions.
منابع مشابه
An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice
Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 do...
متن کاملCardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination.
Na(v)1.5, the cardiac isoform of the voltage-gated Na+ channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Na(v)1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd4/Nedd4-like ubiquitin-protein ligases. Because Nedd4-2 is well expressed in the heart, we i...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملRegulation of the human ether-a-go-go-related gene (hERG) channel by Rab4 protein through neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2).
The human ether-a-go-go-related gene (hERG) encodes the pore-forming α-subunit of the rapidly activating delayed rectifier K(+) channel in the heart, which plays a critical role in cardiac action potential repolarization. Dysfunction of IKr causes long QT syndrome, a cardiac electrical disorder that predisposes affected individuals to fatal arrhythmias and sudden death. The homeostasis of hERG ...
متن کاملConcerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport.
The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017